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a b s t r a c t

Thermoelastic martensitic transformation has been studied in CuAl(11.5 wt%)Ni(5.0 wt%) single crys-
talline shape memory alloy under constant temperature, T, as well as under constant uniaxial stress, s,
measuring the relative deformation, e, as the function of s and T, respectively. From the obtained
hysteretic curves the stress/temperature dependence of the martensite and austenite start and finish
temperatures/stresses were calculated and discussed in terms of chemical and non chemical energy
contributions. The difference between the slopes of the start and finish temperatures versus stress
functions and the slope of the equilibrium transformation temperature versus stress is interpreted as the
consequence of the s dependence of the elastic energy term. The transformation strain etr depends both
on s (at constant T) and on T (at constant s) and both functions have the same saturation value, belonging
to the stress induced (single) variant martensite structure. It was obtained that the dissipative terms are
practically independent of s and T, and have higher values for the 3wT than for the 3ws loops.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Shape memory alloys (SMA) have important technological
applications as functional smart materials (see e.g. [1e4]). Espe-
cially two alloy families have been commonly used for mass
industrial applications, the TieNi and the CueZneAl alloys
[1e3,5,6]. Furthermore, CueAleNi alloys are being considered for
possible use at higher temperatures [4]. These applications imply
a deep knowledge of the characteristics of the thermoelastic
martensitic transformation, which provides the basis mechanism
for shape memory behavior. Thus deeper understanding of the
elastic and dissipative energy contributions to the transformation
can lead to improved control of the shape memory function [7,8].

In this work, the characteristics of the thermoelastic martensitic
transformation have been studied in CuAl(11.5 wt%)Ni(5.0 wt%)
single crystalline shapememory alloy under constant temperature, T,
as well as under constant uniaxial stress, s, measuring the relative
deformation as the function of s and T, respectively. From the
obtained hysteretic curves the stress/temperature dependence of the
martensite and austenite start and finish temperatures/stresses as
well as of the dissipative and elastic energy terms are calculated on
the basis of the model published in [8e11]. Furthermore, the differ-
ence between the slopes of start and finish temperatures versus
All rights reserved.
stress functions and the slope of the equilibrium transformation
temperature versus stress is analyzed and interpreted as the conse-
quence of the s dependence of the elastic term. It is also shown that
the transformation strain, as determined form the se3 hysteretic
loops (at fixed temperatures) has temperature dependence too. We
discuss the temperature and stress dependence of 3tr via the
dependence on the volume fraction of the stress induced (single)
variant martensite structure, h¼ VMs/VM, (VM ¼ VMTþ VMs, and VMT
and VMs denotes the volume of the thermally as well as the stress
induced martensite variants, respectively; and the total transformed
martensite volume fraction is x¼VM/V, with V ¼ VM þ VA).
2. Experimental

Thermally and stress induced martensitic transformations were
investigated under constant uniaxial stresses and at constant
temperatures, respectively, in CuAl(11.5 wt%)Ni(5.0 wt%) single
crystalline samples. The samples were cut from a rod by a simple
electro discharge machine and the final dimensions were: 41 mm
in length and 0.45 and 0.59 mm2 in square cross section, respec-
tively. The orientation was [110]A. The stress-strain as well as the
strain-temperature curves were obtained by a tensile machine
(Chatillon TCD225) applying an external heating system in which
thermal resistance was used for heating. The heating/cooling rate
was approximately 8 � 1 K min�1. The thermal as well as the stress
induced hysteretic loops were determined between 0 and 178 MPa
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(at 10 fixed stress levels) as well as between 373 K and 423 K (at 8
fix temperatures), respectively.

The entropy of transformation was estimated from the
measured differential scanning calorimeter runs (DSC Per-
kineElmer DSC-7) at zero uniaxial stress with 2 K/min heating and
cooling rate, according to the relations [12]

DsY ¼
ZMf

Ms

dQY

T
y� Ds[ ¼

ZAf

As

dQ[

T
: (1)

HereQ denotes the heat of the transformation and the up and down
arrows correspond to the cooling and heating process, respectively.
Note that (1) is strictly valid only if the heat capacity difference
between the parent and the product phase is zero. Since the
difference of absolute values of entropy changes estimated was
within the experimental error this approximation was used.

It is well-known that Cu-based shape memory alloys show
thermoelastic transformations into various martensitic phases,
depending on the chemical composition, temperature and applied
stress and its orientation relative to the single crystal axis [13e16].
However, in our alloy, in the temperature and stress range inves-
tigated, only the transformation from the high temperature cubic
b phase to the b0(18R) phase takes place [13,14].
Fig. 2. a) Thermal hysteretic loops (3 versus T curves) at four different uniaxial stress
levels, b) Transformation strain as function of stress (3tr is the maximal of value of 3; in
Fig. 2a; see also Fig. 3 in [17]).
3. Results

Fig. 1 shows the DSC curves measured. The value of the entropy
change was calculated from (1) and its magnitude is negative for
A/M and positive forM/ A: DsY/Vh Ds/V¼�1.58 � 105 J/Km3,
or Ds ¼ �1.26 J/K mol. The molar volume of our sample is
V ¼ 7.9 � 10�6 m3/mol. Note that this value of the entropy is in
a good agreement with those obtained for b to b0 transformation in
alloys of similar composition [14].

Fig. 2a shows the deformation-temperature hysteretic loops at
different constant uniaxial stress levels. It can be seen that at low
stresses the total 3 belonging to the transformation, i.e. 3tr, is small
and there is a sudden increase between 15 and 30 MPa, as it is
illustrated in Fig. 2b too. It is worth noting that in a more recent
conference proceedings [17] we published an analysis of our results
obtained for b to g0 [8] as well as for b to b0 transformation (which is
described here). However, there we have concentrated on
a comparative analysis of the 3tr(s) (and 3tr(T)) curves, as well as the
effect of stress dependence of it on the slope of the equilibrium
transformation temperature versus stress functions. Furthermore it
was also analyzed how the stress dependence of 3tr is reflected in
Fig. 1. DSC curve measured at zero stress.
the dissipative energy contributions for both types of trans-
formations. The details of the results for b to b0 transformation (DSC
measurements, 3eT and 3es hysteretic loops and the extended
analysis of data obtained) are presented here and we mark those
figures which already were included in [17].

Fig. 3a shows the 3es hysteretic loops measured at different
temperatures. Fig. 3b shows the transformation strain as function
of temperature: they were calculated from the 3es loops. It can be
seen that, as it is expected, the maximal value is about the same as
on Fig. 2b. From Figs. 2a and 3a the values of the start and finish
temperatures and stresses were determined as points where the
hysteretic curve leaves as well as returns to the linear lines fitted to
the pure phases. Figs. 4 and 5 shows the stress and the temperature
dependence of the start and finish temperatures and stresses,
respectively.

In order to carry out the analysis on the stress and temperature
dependence of the start and finish quantities as well as of the elastic
and dissipative energy terms [8,9], the vertical axes of the hyster-
etic curves were normalized, giving the transformed fraction of
martensite phase, x.
4. Discussion

4.1. Relations used in the analysis of data

It has been recently discussed in [11] that in the austenite to
martensite transformation of shape memory alloys the trans-
formation strain, 3tr, usually has definite field dependencewhile the
change in the entropy or volume can be considered constant. Under



Fig. 3. a) s versus 3 at four different temperatures, (b) Transformation strain as function
of temperature (red out from curves like those in Fig. 3a; see also Fig. 5 in [17]).

Fig. 5. Start and finish stresses as the function of temperature.

T.Y. El Rasasi et al. / Intermetallics 18 (2010) 1137e1142 1139
uniaxial loading the field dependence of 3tr is related to the change
of the martensite variant distribution with increasing field
parameter. For the description of this, the volume fraction of the
stress induced (single) variant martensite structure, h, was used.

Furthermore, on the basis of a simple model for the interpre-
tation of the hysteretic loops, in terms of chemical, elastic and
dissipative energy contributions [9], it was also shown in [11] that
the start and finish temperatures can be given as

MsðsÞ ¼ T0ðsÞ � ½d0 þ e0�=½�Ds�
Mf ðsÞ ¼ T0ðsÞ � ½d1 þ e1�=½�Ds�
Af ðsÞ ¼ T0ðsÞ þ ½d0 þ e0�=½�Ds�
AsðsÞ ¼ T0ðsÞ þ ½d1 þ e1�=½�Ds�;

(2)
Fig. 4. Start and finish temperatures as the function of stress.
aswell as for thestart andfinishstresses (e.g.sMs(T) denotes thestress
at which the martensite starts to form at temperature T) one has:

sMsðTÞ ¼ soðTÞ � ½do þ eo�
��V3tr

�
sMf ðTÞ ¼ soðTÞ � ½d1 þ e1�

��V3tr
�

sAf ðTÞ ¼ soðTÞ þ ½do þ eo�
��V3tr

�
sAsðTÞ ¼ soðTÞ þ ½d1 þ e1�

��V3tr
�
:

(3)

Here the quantities on the left hand side have their usual
meanings, do, d1, eo e1 denote the derivatives of the changes of the
dissipative and elastic energy by the transformed martensite
volume fraction, x, at x ¼ 0 (martensite start point) and at x ¼ 1
(martensite finish), respectively. In writing (2) and (3) the usual
assumption in shape memory alloys, namely that for the di and ei
parameters the ei ¼ eiY¼ �ei[ and do ¼ doY ¼ do[, i ¼ 0,1, relations
hold, was assumed. To(s) and so(T) are the stress and temperature
dependent equilibrium transformation temperature and stress,
respectively and are given by

ToðsÞ ¼ Toð0Þ � ð1=DsÞsVetr (4)

and

soðTÞ ¼ ��
Ds=Vetr

�½T � Toð0Þ�: (5)

Relations (4) and (5) are the (integral) forms of the Clau-
siuseClapeyron relation. Note that they are linear function of s or
T only if 3tr is constant.

In this paper wewill consider that the stress and/or temperature
dependence of 3tr can be expressed via the h dependence i.e. 3tr(h)
[11]:

3tr ¼ 3T þ ð3s � 3TÞh; (6)

where 3T and 3s are the transformation strains when fully thermally
induced multi variant structure forms (h ¼ 0), as well as when the
martensite consists of a fully ordered array of stress preferred
variants (single variant state, h ¼ 1), respectively. This is plausible,
because according to [11] h (and thus 3tr) is not constant but can
depend on the T and s variables. Indeed, it can be very small or even
close to zero for the formation of the thermally induced (randomly
oriented) martensite variants (usually there is a very small resul-
tant (remanent) strain in single crystalline samples). On the other
hand during the formation of stress induced martensite a single
variant structure can form (h ¼ 1) i.e. 3tr ¼ 3s. Accordingly in



Fig. 6. Calculated stress dependence of the equilibrium transformation temperature,
To. (See also Fig. 4 in [17]; note that due to a calculation error in the entropy by a factor
of 2.21 in [17], the vertical axis is re-scaled here).
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relations (2)e(5) 3tr should always be taken at that h value which is
relevant for the given values of the T and s variables.

It is also worth mentioning that there exists a direct relationship
between To(0) and so(0) [11]:

s0ð0Þ ¼ T0ð0ÞDs
V3trðs0; T ¼ 0Þ ¼ T0ð0ÞDs

V3tr0
; (7)

here 3tr, plausibly should be taken at the equilibrium trans-
formation stress and zero temperature, i.e. it is a constant and will
be denoted by 3tro here.

Finally, it was shown in [9] that a local equilibriummodel, based
on the thermoelastic balance requiring that the derivative of the
change of the Gibbs free energy by the martensite volume fraction,
x, should be equal to zero, gives the following relations [11]

TYðxÞ ¼ T0ðsÞ � ½dYðxÞ þ eYðxÞ�=½�Ds�

T[ðxÞ ¼ T0ðsÞ þ ½dYðxÞ þ e[ðxÞ�=½�Ds�; (8)

where again the up and down arrows correspond to the cooling and
heating process, respectively. In fact the inverses of these functions
(i.e. the x(TY) and x(T[) curves) are the lower and upper parts of the
normalized 3�T hysteretic loops, respectively. Thus, making the
usual assumptions e(x) ¼ e(x)Y ¼ �e(x)[ and d(x) ¼ d(x)Y ¼ d(x)[
and taking the difference and the sum of TY(x) and T[(x), the e and
d quantities can be calculated as the function of x at different s

levels. (Note that the e(x) function can be calculated irrespective of
the To(s)Ds constant value [9,11] if To(0) is not known.)
Fig. 7. Stress dependence of the dissipative terms (see also Fig. 7 in [17] with recal-
culated vertical axis, as mentioned at Fig. 6).
4.2. Analysis of experimental data

4.2.1. Results from thermal hysteretic loops
First let us investigate, whether the commonly used assumption

in the literature (see e.g. [6,7,18]) that the slopes of the start and
finish temperatures and the slope of the To(s) are approximately
the same or not. From the relations, presented in Sec. 4.1, it is clear
that i) strictly even the linear s dependence of To is not fulfilled in
general (see Fig. 2b which illustrates that 3tr is not constant), ii) the
s dependence of the elastic and dissipative terms (ei, di, i ¼ 0,1) as
compared to the To(s) function, can also give a contribution to the
stress dependence of the start and finish temperatures (see rela-
tions (2)). Thus we plotted the To(s)eTo(0) values versus s in Fig. 6,
calculated from (4) using the measured Ds/V value and the 3tr(s)
curve (Fig. 2b). It can be seen that this function can be approxi-
mated by a straight line, neglecting the small deviations in the
interval between 0 and 40MPa. In fact this slight S-shape part up to
40 MPa is the consequence of the stress dependence of 3tr (see the
insert in Fig. 6). The straight, line fitted in the whole stress range,
gives the slope 0.39� 0.05 K/MPa. At the same time the slopes ofMs
and Af as well asMf, and As (see Fig. 4) are practically the same: 0.59
as well as 0.50 K/MPa, respectively. Thus these differ from the one
obtained for the slope of To(s).

We can analyze whether this difference comes from the stress
dependence of di or ei parameters or from both. Fig. 7 shows the
stress dependence of the do and d1 quantities, calculated from the
differences of the Af(s) and Ms(s) as well as of the As(s) and Mf(s),
respectively. It can be seen that, within the scatter of the measured
points they are independent of the stress, and both has an average
value of about 12 � 3 J/mol. On the other hand the eo and e1
parameters have a linear stress dependence, as it is shown in Fig. 8.
The vertical axis of this figure shows the To(0)Ds þ eo or the To(0)
Ds þ e1 quantities calculated from the sums of Ms(s) þ Af(s) and
Mf(s) þ As(s), respectively with the help of the quantities sV3tr(s)
(shown already on Fig. 6). Note that since the To(0)Ds quantity is
negative (Ds < 0) and thus from the fact that the values on the
vertical axis are negative one can conclude that eo(0) < rTo(0)Dsr.
The slopes of these curves are �0.25 and �0.14 J/mol MPa,
respectively, or dividing it by Ds we have the contribution of the
elastic energy contributions to the slopes of the start and finish
temperatures (see eq.(3)): v(eo/Ds)vs ¼ 0.20 K/MPa and v(e1/Ds)v
s ¼ 0.11 K/MPa, respectively. Taking into account that the errors in
the estimation of slopes are about�0.05 K/MPa, it can be concluded
that the difference between the slopes of the To(s) and Ms(s) or
As(s) is caused by the stress dependence of the elastic energy
contributions.

4.2.2. Results obtained from se3 hysteretic loops
For the analysis of the temperature dependence of so, unfortu-

nately we can not apply a similar procedure as for the stress
dependence of To, because we do not know the value of To(0) (see
also eq. (5)), where 3tr is temperature dependent as it was shown in
Fig. 3b). Nevertheless, the slopes of the straight lines fitted to the
start and finish stresses versus temperature functions (Fig. 5)
are vsMs

=vT ¼ 1:60 MPa=K; vsMf
=vT ¼ 1:96 MPa=K; vsAf

=vT ¼
1:54 MPa=K; and vsAs

=vT ¼ 2:17 MPa=K. Furthermore the slopes
of the di(T) and ei(T) functions, shown in Fig. 9 as well as 10 and
calculated from the differences and sums of the sAf

ðTÞ and sMs
ðTÞ as

well as sAs
ðTÞ and sMf

ðTÞ curves (see Fig. 5), and using the 3tr(T)
values given in Fig. 3b,were alsodetermined. For instance in the case
of the elastic terms one can write, using relations (3), (5) and (7)



Fig. 8. Stress dependence of the elastic energy terms.

Fig. 10. Temperature dependence of the ToDs þ ei quantities (i ¼ 0,1).
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V3trðTÞ
h
sMs

ðTÞ þ sAf
ðTÞ

i
2

þ TDs ¼ V3trðTÞs0ðTÞ þ TDsþ e0ðTÞ
¼ T0ð0ÞDsþ e0ðTÞ
¼ s0ð0ÞV3tr0 þ e0ðTÞ;

(9)

A similar relation holds for e1. On the left hand side of (9) all the
quantities (and their temperature dependence) are known. It can
be seen from Fig. 9 that do(T) and d1(T) are constant within the
experimental errors, and their average value (about 4.0 � 1.5 J/mol)
is lower than the values of do(s) and d1(s) shown on Fig. 7. On the
other hand eo(T) and e1(T) are temperature dependent with slopes
�0.55 J/mol K and �0.18 J/mol K, respectively (Fig. 10).

4.2.3. Self-consistency of our analysis
The following facts confirm the self consistency of the analysis

carried out above.
In both sets of investigations (thermally and stress induced

transformations) we have observed that the transformation strain
depends on the field parameter (Figs. 2b and 3b), but both have the
same saturation value.

This can be interpreted by the increase of the fraction of the
stress induced (single) martensite variant structure, h, according to
relation (6), from which e.g. an S-shape h(s) function follows.

The difference of the slopes of the linear stress dependence of
the start and finish temperatures as well as the slope of the To
temperature corresponds to the contribution from the stress
Fig. 9. Temperature dependence of the di quantities (i ¼ 0,1).
dependence of the elastic energy terms (the dissipative terms are
practically independent of s).

The values obtained for the do and d1 quantities have almost
the same values in both sets, but their value is lower for the 3es

loops by a factor of 3. It is worth mentioning that most probably
both di(s) and di(T) (i ¼ 0,1) functions are not constant but the
resolution of their dependence on s and T, respectively, due to
their small values and the experimental errors, is not possible
from our data. Nevertheless, Fig. 7 (and Fig. 12 showing 2D versus
s) suggest that the di(s) functions could have a maximum at about
60 MPa, while at s ¼ 0 MPa as well as at s ¼ 178 MPa its average
value is about 6e7 J/mol, which is close to 4 J/mol obtained from
the di(T) functions. Furthermore, since at higher temperatures
higher stress is necessary to start the transformation, it is also
plausible that the negative slope of the second part on Fig. 7
should correspond to a negative slope on the di(T) functions.
Indeed there is a slight decreasing tendency with increasing T on
Fig. 9. Unfortunately, the accuracy of our present results does not
allow a deeper and proper analysis of the field dependence of the
dissipative terms. In addition, the details of the transformation
(and thus the magnitude of di) can be different for stress and
temperature induced transformations as well as can also depend
on the prehistory of the samples (not investigated here).

Finally Fig. 11 shows the d(x) function as calculated from the
inverses of the normalized hysteretic 3eT loops (see relations (8)) at
different stress levels, while in Fig. 12 the twice of the integral of
this for the whole thermal circle (i.e. between x ¼ 0 and x ¼ 1), 2D
Fig. 11. Dissipative energy (d(x) ¼ [d0(x) þ d1(x)]/2) term versus the transformed
martensite fraction, calculated from the normalized 3eT loops, at different stress levels.



Fig. 12. Energy dissipated within one 3eT hysteretic loop as the function of s (see also
Fig. 8 in [17] with recalculated vertical axis, as mentioned at Fig. 6).
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(s) is plotted. The full dots in Fig. 12 show the values obtained from
integration, while the open dot at s ¼ 0 was calculated from the
DSC curves (Fig. 1) according to the relation QY þ Q[ ¼ 2D
(QY ¼ �331.6 J/mol, Q[ ¼ 357.6 J/mol). It can be seen that full dots
fit self-consistently within the experimental errors to the open dot
calculated from the independent (DSC) measurement. Furthermore
the value of 2D is constant within the experimental scatter and its
average is about 24 J/mol.

5. Conclusions

The following conclusions can be drawn from our results.

i) The transformation strain, 3tr, determined from 3eT loops, has
an S-shape dependence on the stress.

ii) The transformation strain, determined from se3 loops,
depends on the temperature showing a similar saturation
value (of about 6.1%) as obtained from 3 eT loops.

iii) i) and ii) reflects, according to eq. (6), a similar change in the
relative fraction of stress induced martensite variants, h,
versus s and T, respectively.

iv) The dissipative energy terms (derivatives of the dissipative
energy by the martensite volume fraction, x, at x ¼ 0 and
x ¼ 1), do and d1, were calculated from 3eT loops and it was
obtained that they are independent of s, having and average
value of 12 J/mol.

v) The elastic energy terms (derivatives of the elastic energy by
themartensite volume fraction, x, at x¼ 0 and x¼ 1), eo and e1,
were calculated from eeT loops. They are s dependent with
slopes �0.25 and �0.14 J/mol MPa, respectively.

vi) Although the equilibrium transformation temperature, To,
due to the stress dependence of 3tr, is not a linear function at
low stresses, the To(s) function can be approximated by
a straight line.

vii) The slope of To(s) is different from the slopes of the start and
finish temperatures and this difference is attributed to the
stress dependence of eo and e1.

viii) The dissipative energy terms, do and d1, were also calculated
from se3 loops and it was obtained that they are independent
of T. Both have a value of about 4 J/mol and their value is lower
for the 3es loops by a factor of 3 than those obtained from the
3eT loops.

ix) The elastic energy terms, eo and e1, were also calculated from
se3 loops and it was obtained that they have linear tempera-
ture dependencewith slopes�0.55 J/mol K and�0.18 J/mol K,
respectively.
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